

Evaluation of The Impact of Severe Endometriosis on Embryo Morphokinetics

<u>Feyzan Sezer¹</u>, Gülçin Özkara², Hakan Kadir Yelke³, Gönül Özer³, Semra Kahraman³

¹Bezmialem Vakıf University, Faculty of Medicine, Istanbul, Türkiye

²Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biology, Istanbul, Türkiye

³ Memorial Sisli Hospital, Assisted Reproductive Technologies and Reproductive Genetics Center, Istanbul, Türkiye

Endometriosis & IVF

Endometrial stroma and glands outside of endometrium

Frequency: 1/3 of women undergoing IVF treatment¹

Number of oocytes: Number of total and mature (MII) oocytes collected from OPU ↓

Quality of Oocyte/Embryo: Controversial results^{2,3,4}

What Is Time-Lapse Monitoring (TLM) ?

TLM; is a system of camera imaging and incubation where embryos are monitored until they are transferred to the endometrium in the IVF laboratory.

EmbryoScope®

What Is Time-Lapse Monitoring (TLM) ?

*After microinjection (IMSI), embryos placed into the system are photographed from 5 different levels every 10 minutes, creating videos of all developmental stages.

Morphokinetic Assesment of Embryos

ECC: Embryonic Cell Cycle S2/S3: synchronization of cell divisions

(Ciray et al. 2014)

cc3d

\$2

Background

Morphokinetic parameters more detailed info about embryo development Only a few studies and controversial results about endometriosis and morphokinetics^{5,6,7,8} Women BMI / sperm characteristics have impact on morphokinetics^{9,10}

What Was Our Aim?

To evaluate the impact of severe endometriosis (SE) on morphokinetic parameters of embryos compared to a control group (tubal factor).

Sperm Selection with IMSI

Morphologically selected with IMSI

Efforts were made to eliminate potential effects of sperm on morphokinetics

Results

Demographic and clinical characteristics of patients

	SE (n=134)	Control (n=107)	p-value	
Women Age (year)	32,49±3,34	32,70±3,28	0,629	
Women BMI (kg/m²)	22,96±2,82	23,56±2,84	0,100	
AMH (ng/ml)	2,62±1,92	1,89±1,45	0,636	
Basal FSH Level (mIU/ml)	8,83±3,45	9,24±4,31	0,592	
OPU Total Oocyte (n)	8,81±5,64	9,30±5,90	0,515	
OPU MII Oocyte (n)	7,49±4,77	7,80±5,22	0,622	

Inter-group comparisons were conducted using the Student's t-test. Values are presented as mean ± standard deviation. FSH: Follicle Stimulating Hormone, AMH: Anti-Müllerian Hormone, MII: metaphase II, n: number

Results

	Groups			
Morphokinetic Parameters	SE (n=729)	Control (n=551)	p-value	
PNa	8,64±3,76	7,74±2,64	<mark><0.001</mark>	
PNf	24,95±5,13	24,04±5,70	<mark>0,007</mark>	
t2	33,76±7,42	30,02±6,34	<mark><0.001</mark>	
t3	39,34±7,17	37,69±6,85	<mark><0.001</mark>	
t4	46,52±9,78	41,68±8,30	<mark><0.001</mark>	
t5	52,58±9,28	50,04±8,81	<mark><0.001</mark>	
t6	55,96±9,51	53,79±9,08	<mark><0.001</mark>	
t7	59,02±10,03	56,80±9,90	<mark><0.001</mark>	
t8	66,51±11,38	61,04±11,02	<mark><0.001</mark>	
t9	77,48±12,41	70,48±10,60	<mark><0.001</mark>	
tSC	88,52±10,09	86,43±11,78	0,053	
tM	95,76±9,74	89,10±11,84	<mark><0.001</mark>	
tSB	103,59±8,49	99,27±9,09	<mark><0.001</mark>	
tB	109,43±7,50	105,41±7,49	<mark><0.001</mark>	
tEB	111,20±7,26	110,81±6,16	0,552	

Inter-group comparisons were conducted using the Student's t-test. Values are presented as mean ± standard deviation. Morphokinetic parameters are calculated as hours following ICSI. PNa: pronucleus appearance, PNf: pronucleus fading, t2....t9:time to 2....9 cell, tSC:start of compaction, tM:morula, tSB: start of blastulation, tB:blastocyst, tEB: expanded blastocyst

R	esu	lts				(Cell Cyc	le Intervals						
60.00														
50.00														
40.00														
30.00														
20.00														
*All	paramet	ers we	re p<0.	01 exce	pt t4-t8	(cc3d) a	and t8-t	M						
10.00		\bigcirc)	\bigcirc)				\supset					
0.00	PNf-t2 (ECC1)	t2-t3 (cc2a)	t2-t4 (cc2b)	t4-t5 (cc3a)	t4-t6 (cc3b)	t4-t7 (cc3c)	t4-t8 (cc3d)	t3-t4 (S2) t5-t8	(S3) t2-t8	t8-tM	tM-tSB	t8-tEB	tSB-tEB	tM-tEB
						SE	(n=729)	Control (n=	=551)					

Inter-group comparisons were conducted using the Student's t-test. Values are presented as mean values. Morphokinetic parameters are calculated as hours following ICSI. ECC: embriyonic cell cycle, S2/S3: synchronization of cell divisions

Discussion

human

Journal of Assisted Reproduction and Genetics (2022) 39:619–628 https://doi.org/10.1007/s10815-022-02406-2

ASSISTED REPRODUCTION TECHNOLOGIES

The impact of endometriosis on embryo morphokinetics: embryos from endometriosis patients exhibit delayed cell cycle milestones and decreased blastulation rates

Natalia C. Llarena¹ · Christine E. Hur¹ · Meng Yao² · Kaia Schwartz³ · Tommaso Falcone^{1,4} · Nina Desai¹

n Update, Vol.28, No.5, pp. 656-686, 2022 on on May 25, 2022 https://doi.org/10.1093/humupd/dmac022

Morphological and morphokinetic associations with aneuploidy: a systematic review and meta-analysis

Thomas Bamford ¹**, Amy Barrie ², Sue Montgomery¹, Rima Dhillon-Smith ³, Alison Campbell⁴, Christina Easter³, and Arri Coomarasamy

Human Reproduction, Vol.26, No.10 pp. 2658-2671, 2011

Advanced Access publication on August 9, 2011 doi:10.1093/humrep/der256

ORIGINAL ARTICLE Embryology reproduction

RESEARCH ARTICLE

Endometriosis accelerates synchronization of early embryo cell divisions but does not change morphokinetic dynamics in endometriosis patients

Michael Schenk^{1,2}, Julia Maria Kröpfl³, Martina Hörmann-Kröpfl¹, Gregor Weiss¹*

1 Das Kinderwunsch Institut Schenk GmbH, Dobl, Austria, 2 Institute of Human Genetics, Medical University of Graz, Graz, Austria, 3 Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland

* gregor.weiss@kinderwunsch-institut.at

The use of morphokinetics as a predictor of embryo implantation[†]

Marcos Meseguer^{1,*}, Javier Herrero¹, Alberto Tejera¹, Karen Marie Hilligsøe², Niels Birger Ramsing², and Jose Remohí¹

Instituto Valenciano de Infertilidad, Universidad de Valencia, Plaza de la Policía Local, 3, Valencia 46015, Spain ²Unisense FertiliTec Aarhus, Denmark

*Correspondence address. Tel: +34-96-305-0988; Fax: +34-96-305-0999; E-mail: marcos.meseguer@ivi.es

Submitted on March 25, 2011; resubmitted on June 27, 2011; accepted on July 4, 2011

References

1) Ozkan S, Murk W, Arici A. Endometriosis and infertility: epidemiology and evidence-based treatments. Ann N Y Acad Sci. 2008 Apr;1127:92-100. doi: 10.1196/annals.1434.007.

2) Qu H, Du Y, Yu Y, Wang M, Han T, Yan L. The effect of endometriosis on IVF/ICSI and perinatal outcome: A systematic review and meta-analysis. J Gynecol Obstet Hum Reprod. 2022 Nov;51(9):102446. doi: 10.1016/j.jogoh.2022.102446. Epub 2022 Jul 26.

3) Esmaeilzadeh S, Ghorbani M, Abdolahzadeh M, Chehrazi M, Jorsaraei SG, Mirabi P. Stages of endometriosis: Does it affect oocyte quality, embryo development and fertilization rate? JBRA Assist Reprod. 2022 Nov 9;26(4):620-626. doi: 10.5935/1518-0557.20220051.

4) Brosens I. Endometriosis and the outcome of in vitro fertilization. Fertil Steril. 2004 May;81(5):1198-200. doi: 10.1016/j.fertnstert.2003.09.071.

5) Boynukalin FK, Serdarogullari M, Gultomruk M, Coban O, Findikli N, Bahceci M. The impact of endometriosis on early embryo morphokinetics: a case-control study. Syst Biol Reprod Med. 2019 Jun;65(3):250-257. doi: 10.1080/19396368.2019.1573275.

6) Freis A, Dietrich JE, Binder M, Holschbach V, Strowitzki T, Germeyer A. Relative Morphokinetics Assessed by Time-Lapse Imaging Are Altered in Embryos From Patients With Endometriosis. Reprod Sci. 2018 Aug;25(8):1279-1285. doi: 10.1177/1933719117741373.

7) Llarena NC, Hur CE, Yao M, Schwartz K, Falcone T, Desai N. The impact of endometriosis on embryo morphokinetics: embryos from endometriosis patients exhibit delayed cell cycle milestones and decreased blastulation rates. J Assist Reprod Genet. 2022 Mar;39(3):619-628. doi: 10.1007/s10815-022-02406-2.

8) Schenk M, Kröpfl JM, Hörmann-Kröpfl M, Weiss G. Endometriosis accelerates synchronization of early embryo cell divisions but does not change morphokinetic dynamics in endometriosis patients. PLoS One. 2019 Aug 1;14(8):e0220529. doi: 10.1371/journal.pone.0220529.

9) Bartolacci A, Buratini J, Moutier C, Guglielmo MC, Novara PV, Brambillasca F, Renzini MM, Dal Canto M. Maternal body mass index affects embryo morphokinetics: a time-lapse study. J Assist Reprod Genet. 2019 Jun;36(6):1109-1116. doi: 10.1007/s10815-019-01456-3.

10) Nikolova S, Parvanov D, Georgieva V, Ivanova I, Ganeva R, Stamenov G. Impact of sperm characteristics on time-lapse embryo morphokinetic parameters and clinical outcome of conventional in vitro fertilization. Andrology. 2020 Sep;8(5):1107-1116. doi: 10.1111/andr.12781.

Thank you for listening